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Abstract.  Most ITS have a means of providing assistance to the student, either 
on student request or when the tutor determines it would be effective.  
Presumably, such assistance is included by the ITS designers since they feel it 
benefits the students.  However, whether—and how—help helps students has 
not been a well studied problem in the ITS community.  In this paper we present 
three approaches for evaluating the efficacy of the Reading Tutor’s help:  
creating experimental trials from data, learning decomposition, and Bayesian 
Evaluation and Assessment, an approach that uses dynamic Bayesian networks.  
We have found that experimental trials and learning decomposition both find a 
negative benefit for help--that is, help hurts!  However, the Bayesian Evaluation 
and Assessment framework finds that help both promotes student long-term 
learning and provides additional scaffolding on the current problem.  We 
discuss why these approaches give divergent results, and suggest that the 
Bayesian Evaluation and Assessment framework is the strongest of the three.  
In addition to introducing Bayesian Evaluation and Assessment, a method for 
simultaneously assessing students and evaluating tutorial interventions, this 
paper describes how help can both scaffold the current problem attempt as well 
as teach the student knowledge that will transfer to later problems.   
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1 Introduction 
An important property of an Intelligent Tutoring System (ITS) is its ability to help 
students.  Thus, measuring the effectiveness of tutor help is an important evaluation of 
an ITS.  Does help help?  Does one type of help work better than the others [1]?  Even 
though the tentative answer is “yes” by most ITS researchers (otherwise, why include 
help at all in the tutor?), answering such questions is surprisingly difficult.  One of the 
difficulties is that the question “does help help?” is ill-defined; what does it mean to 
help students?  Does it mean to assist students in performing correctly on the current 
attempt or does it mean to assist in learning of persistent knowledge that will help on 
future attempts?   

To measure the effectiveness of tutor help, we would ideally set up a 
controlled pre- and post- test experiment.  A typical experimental setup works as 
follows: in the pre-test, we assess student performance before using the ITS.  Then, 
we randomly assign students into two groups.  The experimental group uses one 



version of ITS with the tutor help that we’re evaluating, whereas the control group 
uses another version of ITS without the particular tutor help.  After students use the 
ITS for some time, we assess student performance of the two groups again in the post-
test.  We test the hypothesis that the performance improvement in the experimental 
group is significantly different than in the control group.  This experimental design is 
sound and has been extensively practiced in the field of psychology.  Nonetheless, the 
experimental design is often impractical for evaluating an ITS because a controlled 
experiment takes a long time to conduct and is often too expensive to conduct, 
although exceptions exist [2]. 

Given that the ideal pre- and post-test experimental studies are often impractical, 
there are several other approaches to measure the effectiveness of tutor help.  For 
example, we may conduct user case studies and directly ask the students whether they 
find the tutor help effective.  Unfortunately, while user case studies provide valuable 
qualitative feedback, they lack the ability to draw conclusive relationships.  
Alternatively, we can try to infer tutor help efficacy from data.  For instance, one 
might claim that tutor help is effective if student performance improves when they 
receive help, compared to when they do not receive help.  However, this approach 
raises the question of when to assess student performance.  Immediate performance is 
prone to scaffolding effects where tutor help merely provides a short-term 
performance boost.  For example, some help types provide students the answer; if 
students simply imitate the answer we should not count that as learning. 

In this paper, we describe a methodology to model both tutor help and student 
knowledge in one coherent framework.  This configuration allows us to tease apart the 
effect of help into 1) scaffolding immediate performance and 2) teaching persistent 
knowledge that improves long term performance.  We evaluate the proposed 
framework on student performance data from the Reading Tutor, an Intelligent 
Tutoring System that listens to children read aloud [3].  The Reading Tutor uses 
automated speech recognition to listen to children read aloud and tries to score their 
reading as correct or incorrect.  Students can ask for assistance on a challenging word, 
and the Reading Tutor chooses randomly which type of help to give.  For example, if 
the student clicks on the word “cat” the tutor could say “Rhymes with…bat”; it could 
sound out the word, break longer words into syllables; or simply speak the word for 
the student.  If the student does not like the help provided, he can click again and 
receive another random selection.   

2 Naïve approaches to modeling help 
There are several approaches one could apply to observational data to estimate the 
efficacy of the tutor’s help.  We first discuss experimental trials and learning 
decomposition.   

2.1 Experimental trials 
For experimental trials, two items are needed:  what is being compared, and the 
outcome measure with which to perform the comparison.  Note that all of the scoring 
in this paper is performed by automated speech recognition (ASR), which is not 
nearly as accurate as typed input.  Therefore, interpreting a number in isolation or 
numbers derived from a small number of observations is suspect.  In terms of what is 



being compared, the issue is somewhat problematic.  One natural item of interest is 
student performance on words on which he clicked for help.  One possible 
comparison is words on which he did not ask for help. 
 In terms of an outcome measure, student performance on the word is a 
natural measure to use.  Since students are reading stories aloud to the Reading Tutor, 
we expect students to periodically encounter words simply in the course of reading, 
and we can use those as our outcome.  If we use student performance at reading the 
word immediately after receiving help, we find that words on which the student 
receives help are read  more accurately than words on which he does not.  However, 
this outcome is contaminated by recency effects.  For example, if tutor read 
antidisestablishmentarianism aloud, and the student immediately mimicked the tutor, 
we should not necessarily be confident that he actually knows the word.  Perhaps the 
pronunciation was simply in his working memory buffer [4]. 
 A stronger outcome is one that avoids memory effects by waiting for a later 
day to test the student’s performance.  If we change the outcome to only consider 
cases where the student encounters the word on a later day, then we find that words 
that did not receive help were read with 83% accuracy, while words that received help 
were read with 73% accuracy.  In other words, help is providing a “benefit” to 
students of 10% worse performance.  Although the Reading Tutor’s help could 
certainly be improved, we are skeptical that its assistance is that bad.  A more likely 
explanation is that students click for help on words they do not know.  If a student 
doesn’t know a word, the help might help him to learn it, but even after receiving the 
help he probably will not understand the word as well as one that he already knew.  
Therefore, the difference in performance on later days is more a function of the 
student’s starting knowledge than a function of receiving the help.       

2.2 Learning decomposition 
A slightly more sophisticated technique is learning decomposition [5-7].  Learning 
decomposition is a variant of learning curves.  Typically learning curves estimate how 
much students learn as a result of a practice opportunity.  Learning decomposition 
instead estimates the relative worth of different types of learning opportunities.  For 
example, prior work with learning decomposition has shown that students learn 
approximately 25% more in stories they choose to read vs. those selected by the tutor 
[8].  It is possible to apply learning decomposition to this analysis by considering two 
types of learning encounters:  reading words and receiving help.  In this way, we can 
see how valuable help is compared to simply reading the word.     
 Unlike the experimental trials approach, it is not necessary to construct a 
comparison set of words.  Learning decomposition simply computes the relative 
impact of help compared to reading the word.  Similar to the experimental trials 
approach, it is necessary to decide what the set of allowable outcomes will be.  Again, 
to avoid recency effects, we only consider words that students encounter on later days.  
We fit the model shown in Equation 1 to each student’s data.  By doing so, we get an 
estimate of the impact of help for each student, controlling for the fixed traits of the 
student (this control is analogous to that from having the student be a factor in logistic 
regression). 
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Equation 1.  Learning decomposition formula for evaluating the impact of help 

The learning decomposition model finds that reading a word is, by definition, worth 
1.0 practice opportunities.  Relative to this baseline, depending on the exact model 
used, help is worth roughly -1.5 to -4 trials of learning (e.g. the model reported in [5] 
produces a result of -1.91, while the model shown in Equation 1 gives a result of -3.3 
exposures).  That is, receiving help caused students to perform worse on later trials 
compared to words on which they did not receive help.  Even after controlling for 
student properties by constructing a per-student model, and comparing the effect of 
help relative to a baseline of simply reading a word, help is still found to be unhelpful.  
We suspect a similar effect is occurring is with the experimental trials approach:  
students request help on words on which they have low knowledge.  The help thus 
acts as evidence of a lack of knowledge, rather than a direct cause of that lack of 
knowledge.   

3 New approach:  Bayesian Evaluation and Assessment 
 
There are two primary failures with the above-mentioned naïve approaches to 
modeling the impact of help.  First, controlling for students is not sufficient.  Rather, it 
is necessary to control for the student’s knowledge of the skill (in our case, word) 
being helped.  Second, it is necessary to refine exactly what is meant by help helping 
the student.  Although both of the prior analyses ignored the short-term impact of help 
on performance, that may not be the best approach.  Students typically request help 
when they are stuck; if help can get them unstuck then it can be said to be at least 
partially effective.  Such a temporary boost is of course no substitute for truly 
effective help, otherwise ITS designers would have help systems that simply told 
students the answer.  However, there should at least be some acknowledgement of 
short term benefits. 

To achieve these goals, we unify two common analysis goals in ITS.  The 
first of these is assessing student knowledge.  Most ITS have some form of 
assessment or student modeling.  Figure 1 shows a graphical representation of 
knowledge tracing [8], a fairly common student modeling approach.  This relatively 
simple dynamic Bayesian network suffices to completely describe knowledge tracing 
[9].  The shaded nodes represent things the model can directly observe, in this case 
student performance.  The unshaded nodes represent unobservable latent parameters, 
in this case the student’s knowledge.  Each pair of knowledge and performance 
represents one practice opportunity for a particular skill.  So in this example there are 
two practice opportunities represented.     

The arrow from student knowledge to student performance indicates that 
knowledge influences performance.  Performance is assumed to be a noisy reflection 
of knowledge, and is mediated by two parameters.  The guess parameter represents 
that a  student may sometimes generate a correct response in spite of not knowing the 
correct skill.  The slip parameter acknowledges that even students who understand the 
skill can make an occasional careless mistake.  The definition of each of the 
parameters in Figure 1 is shown in Equation 2.  The link between student knowledge 



across time slices indicates that students maintain and hopefully increase their 
knowledge across time slices.  Although both learning and forgetting can occur in the 
real world, we follow standard practice for knowledge tracing and set the forgetting 
parameter to be 0.   
 

 
 

Figure 1.  Diagram of knowledge tracing 
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Equation 2.  Equations representing knowledge tracing parameters 

The second common analysis goal in ITS is to evaluate tutorial interventions.  Figure 
2 shows graphically how such evaluations are frequently performed [e.g. 1, 10].  In 
this case, both the student performance and the intervention are observable.  The 
approach is to determine how the intervention influences student performance.  Since 
both nodes are observable, this task is typically easier than student modeling.    Our 
approach is to combine these two methodologies, assessment and evaluation, into a 
single modeling framework, shown in Figure 3.  The Student Knowledge and Student 
Performance nodes are similar to the ones in knowledge tracing.  The new node 
represents a binary variable:  did the tutorial intervention we are evaluating occur 
during this practice opportunity?  This node creates two new arcs in the network.  The 
first one, teach, connects the tutorial intervention with student knowledge.  It models 
the impact the tutorial intervention could have on the student’s knowledge.  Note that 
this arc carries forward to future time slices, so the impact on the student will persist.  
The second new arc, scaffold [11], represents the impact the intervention has on the 
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current practice opportunity.    This temporary support does not persist across 
problems, and only serves to aid the student on the current problem. 
 

  

Figure 2.  Common approach for evaluating tutorial interventions. 

 
Figure 3.  Bayesian Evaluation and Assessment architecture 

This approach simultaneously assesses the student, since performance and knowledge 
are linked, and evaluates the tutorial intervention both in the context of its temporary 
benefit to student performance and its lasting impact on student knowledge.  The 
impact of the tutorial intervention can be determined by examining the parameters 
learned by the model.  For example P(learn | tutor intervention = false) is the baseline 
probability that a student will acquire a skill simply by practicing it.  P(learn | tutor 
intervention = true) is the probability the student will acquire the skill as a result of 
receiving both the intervention and a chance to practice the skill.  Comparing these 
two parameters permits us to estimate how much learning the intervention causes.  
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Similarly, the scaffolding effect on student performance can be estimated by 
comparing P(correct response | student didn’t know the skill, intervention=false) vs. 
P(correct response | didn’t know the skill, intervention=true).  Any difference in 
performance is the scaffolding effect of the intervention.  Equation 3 shows all of the 
equations for the Bayesian Evaluation and Assessment model.   
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Equation 3.  Equations for parameters in Bayesian Evaluation and Assessment model 

4 Results 
Our data came from 360 children between six and eight years old who used Project 
LISTEN’s Reading Tutor [3] in the 2002-2003 school year.  On average, students 
used the tutor for 8.5 hours.  Over the course of the school year, these students read 
approximately 1.95 million words (as heard by the automatic speech recognizer).  We 
separated the data into training and testing sets by splitting the students into two 
groups.  We sorted the students according to their amount of Reading Tutor usage and 
then alternately assigned students to the two sets.   
 During a session with the Reading Tutor, the tutor presented one sentence (or 
fragment) at a time for the student to read aloud.  The student’s speech was segmented 
into utterances delimited by silences.  Each utterance was processed by the Automatic 
Speech Recognizer (ASR) and aligned against the sentence.  This alignment scored 
each word of the sentence as either accepted (classified by the ASR as read correctly) 
or rejected (thought to be misread or omitted).  ASR acceptance is modeled as the 
observed performance (Cn).  The tutorial intervention node is instantiated by whether 
the student received help on a word.  For modeling purposes, this paper treats each 
English word as a separate skill. 
 We make use of a generic Bayes net toolkit for student modeling, BNT-SM 
[12], for our experiments.  BNT-SM inputs a data set and a compact XML 
specification of a DBN model hypothesized by a researcher to describe causal 



relationships among student knowledge and observed behavior.  It generates and 
executes the code to train and test the model using the Bayes Net Toolbox [13].  BNT-
SM allows researchers to easily explore different hypotheses on how is knowledge 
represented in a student model.  We now show how to use BNT-SM to construct a 
DBN that models the effectiveness of tutor help on student knowledge. 
 We used the BNT-SM and Expectation Maximization (EM) algorithm to 
optimize data likelihood (i.e. the probability of observing our student performance 
data) in order to estimate our model’s parameters.  EM is the standard algorithm used 
in the machine learning community to estimate DBN parameters when the structure is 
known and there exist latent variables (e.g., student knowledge, Kn).  EM is 
guaranteed to converge to a local maximum on the likelihood surface.  We used the 
junction tree procedure for exact inference (estimating the value of the hidden 
variables).  See  Jensen [14] for a thorough introduction to Bayes nets and the 
standard training and inference algorithms.   

4.1 Results for evaluating help 
To evaluate the effectiveness of tutor help, we first compare the model parameters 
estimated by our Bayesian Evaluation and Assessment model with those obtained by 
estimating a simpler knowledge tracing model.  
 Table 1 shows the parameters estimated for the KT model and the Bayesian 
Evaluation and Assessment (Help, for short) model, respectively.  Notice that the KT 
model does not consider the help information, whereas the Help model has the 
parameters conditioned on whether or not tutor help is given or not.  As seen in the 
Help model of Table 1, the probability of already know (i.e. does the student know the 
word when first starting to use the tutor) is much higher when there is no help than 
when there is help.  This suggests that tutor help is more likely to be provided for 
words the student is less likely to know– a positive finding.  Also, the probability of 
learning is higher when there is help than when there is no help.  Even though the 
effect of help is only an 8% relative improvement, it is at least in the right direction 
(unlike the two baseline approaches), suggesting that tutor help does have a positive 
effect on long term knowledge acquisition. 

Table 1.  Comparing the parameters estimated by the KT model and the Help 
model 

Help model  KT 
model No Help 

Given 
Help 

Given 
Already know 0.618 0.660 0.278 

Learn 0.077 0.083 0.088 
Guess 0.689 0.655 0.944 
Slip 0.056 0.058 0.009 

 Also as seen in Table 1, the probability of guess is higher when there is help than 
when there is no help and the probability of slip is higher when there is no help than 
when there is help.  In other words, even if the student does not know the skill he is 
much more likely to generate a correct response when he receives than when he does 
not:  94% vs. 66% (the guess rate is inflated when applying knowledge tracing to 
student models that use speech recognition for scoring [15]).  This finding suggests 
that tutor help does have a scaffolding effect on assisting immediate performance.  



Notice that, although we have argued that teaching effect is more beneficial in the 
long run than the scaffolding effect, we cannot ignore the latter.  For instance, if a 
student is stuck when using the tutor, the tutor should still help the student to become 
unstuck. Finally, both the teaching and scaffolding effects are statistically reliable at 
p<0.05 (paired samples t-test, done per-skill to avoid intraskill correlation), 
suggesting that tutor help does have an effect on both student knowledge and student 
performance. 

4.2 Results for modeling students 
Although the goal of this paper is to determine whether and how help helps students, 
our model also estimates student knowledge as a side effect.  Therefore, we evaluate 
its performance at doing so.  Since student knowledge is a latent variable that cannot 
be directly observed, we have no gold standard against which to compare.  Instead, we 
used the trained student model to predict whether the ASR would accept or reject a 
student’s next attempt to read the word.  That is, we observe reading item by item and 
predict whether the next word will be read correctly (in not yet seen test data).  An 
ROC (Receiver Operating Characteristic) curve measures the performance of a binary 
classifier by plotting the true positive rate against the false positive rate for varying 
decision thresholds.  The area under the ROC curve (AUC) is a reasonable 
performance metric for classifier systems, assuming no knowledge of the true ratio of 
misclassification costs [16]. 
 On our training data, the new model had near identical performance to 
classic knowledge tracing:  AUC of 0.654 vs. 0.652.   On the held out test data, 
performance was again a tie:  AUC of 0.612 vs 0.615.  It is disappointing our 
approach of simultaneously assessing students and evaluating the tutor did not yield 
more accurate assessment.   

 

5 Contributions 
This paper makes three main contributions to the ITS literature.  First, the Bayesian 
Evaluation and Assessment framework unifies several strands of research.  It is based 
on knowledge tracing [8] for assessing students.  There has also been work on 
creating a node to measure the impact of help and connecting it to student knowledge 
[17].  However, this work used a simplified version of knowledge tracing, and was 
never evaluated with actual student data.  The third strand is the ANDES system [18], 
which has a link between student knowledge and performance—that is, it assumes 
that help provides a scaffolding effect—but not between help and knowledge.  
Furthermore, the parameters in the ANDES system were not estimated from data.   
 The second contribution this paper makes is the conceptual one of 
simultaneously representing tutor interventions and the student’s knowledge.  
Previous approaches addressed these problems separately by ignoring one to solve the 
other [1,3].  Specifically, KT ignored help, and some other experiments [3] ignored 
student knowledge, or how it changed over time.   
  The third contribution this paper makes is on distinguishing between two 
effects of help: scaffolding immediate performance vs. boosting actual learning.  Prior 
work either assumed help has no direct impact on student learning [18] or that help 
has no direct impact on student performance [17].  Moreover, because we model tutor 
help and student knowledge in one coherent framework, we can estimate the 



scaffolding and teaching effects.  This separation of immediate vs. persistent effect of 
help allows researchers to understand what the tutor intervention is really doing.  For 
instance, it is possible to investigate whether some tutor interventions help persistent 
learning while others mainly help immediate performance.  

6 Future work 
Currently, due to limitations in BNT-SM, we could only test models with discrete, 
binary variables.  For example, in the Help model, we only answer the question “does 
help help at all?”  A more interesting question to ask is “which type of help helps 
more, and when is it effective?”  Thus, a future study is to extend BNT-SM to handle 
multinomial variables, which allows modeling of different help types. 
 One question that we are interested in exploring is how does our dynamic 
Bayes net framework compare to the pre- and post- test experimental design [2].  Do 
they draw similar conclusions, despite the fact that an experimental design is usually 
more expensive to conduct than data fitting with DBNs?  Moreover, what kinds of 
causal relationship can we infer with our Bayesian framework?  That we were able to 
get a positive result with a non-randomized intervention, whether a student receives 
help, suggests the framework should perform well at analyzing actual randomized 
controlled trials, and may even be a more sensitive measure due to its accounting for 
student knowledge.   

Another issue that we are interested in addressing is to better understand why 
we cannot better model students in our new framework.  One possible explanation is 
there are too many parameters.  The impact of help is modeled independently for all 
3000 skills (words) in the domain.  Some way of simplifying the parameter search by 
using hierarachical models or Dirichlet priors [19] may be a solution.   

Finally, we would like to conclude that our Bayesian Evaluation and 
Assessment architecture is the most accurate of the three approaches proposed in this 
paper.  On balance, given that the other two approaches found that help is harmful, we 
can tentatively conclude that the new approach is better.  However, better clarifying 
which approach is most accurate and when would be helpful.  This question cannot be 
answered for interventions whose true effectiveness is unknown (i.e. all ITS 
interventions that exist in the real world).  Therefore, evaluations with synthetic data 
[e.g. 17] are a promising route forward.  

7 Conclusions 
This paper presents a new approach, Bayesian Evaluation and Assessment, that we 
used to measure the impact of help.  Of the three approaches we considered, our new 
framework gave the only plausible answer to the question “does help help?”  
Although the result is equivocal, as we do not know the “real” answer, it is important 
to note that this drawback is fundamental to every method of measuring an 
intervention’s effectiveness.  Typically when a number is presented purporting to 
represent how well an intervention worked, there is no discussion of alternate methods 
of doing the measuring.  By putting the three numbers forward we acknowledge the 
problem, and argue that only one of the numbers is plausibly correct.  The Reading 
Tutor’s on-demand help is potentially useless, and we would not disregard the 
possibility, but the negative impacts claimed by the other two approaches are simply 
implausible. 



 The reason our new framework is superior is that it controls for student 
knowledge while estimating the intervention’s effectiveness.  Conceptually, this 
simultaneous modeling is similar to item response theory [20], which enables better 
comparisons of students across groups by simultaneously estimating student 
proficiency and question difficulty.   
 Finally, we feel it is important to enumerate both impacts of assistance:  
short term performance boosts (scaffolding) as well as longer term learning gains 
(teaching).  By simultaneously addressing all of these aspects of assessment and 
evaluation, this framework represents a step forward in ITS evaluation methodology.   
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